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The present study aims at relating lift and drag to flow structures around a delta 
wing of elliptic section. Aerodynamic forces are analysed in terms of fluid elements of 
non-zero vorticity and density gradient. The flow regime considered is M ,  = 0.6 N 1.8 
and a = 5" - 19", where M ,  denotes the free-stream Mach number and a the angle 
of attack. Let p denote the density, u velocity, and w vorticity. It is found that there 
are two major source elements &(x) and VJx)  which contribute about 95% or even 
more to the aerodynamic forces for all the cases under consideration, 

&(x) = - iu2Vp  * V 4  and 

where 4 is an acyclic potential, generated by the delta wing moving with unit velocity 
in the negative direction of the force (lift or drag). All the physical quantities are 
non-dimensionalized. Detailed force contributions are analysed in terms of the flow 
structures and the elements &(x) and Ve(x).  The source elements &(x) and V,(x)  
are concentrated in the following regions: the boundary layer in front of (below) 
the delta wing, the primary and secondary vortices over the delta wing, and a 
region of expansion around the leading edge. It is shown that Ve(x)  due to vorticity 
prevails as the source of forces at relatively low Mach number, M ,  < 0.7. Above 
about M ,  = 0.75, &(x) due to compressibility generally becomes the dominating 
contributor to the lift, while the overall contribution from V,(x)  decreases with 
increasing M,, and even becomes negative at M ,  = 1.2 for the lift, and at a higher 
M ,  for the drag. The analysis is carried out with the aid of detailed numerical 
results by solving the Reynolds-averaged Navier-Stokes equations, which are in close 
agreement with experiments in comparisons of the surface pressure distributions. 

V J x )  = -pu x w * V4, 

1. Introduction 
Aerodynamic forces generated by vortex systems have been of great interest during 

past several decades. This is true for flows around finite bodies in a wide range of 
flow conditions from low subsonic to high Mach number flows. In the literature, 
extensive study of such flows has extended from geometrically simple bodies to rather 
practical profiles. Among them, delta wings are efficient wing profiles for flight 
vehicles at high speeds of cruise, and are renowned for their vortex systems at angles 
of attack. The vortex systems are considered to be the major source of lift (and also 
drag). The present study aims therefore at investigating how individual flow structures 
contribute to the aerodynamic forces through their vorticity and compressibility. It is 
not fully understood as yet which parts of and how a vortex system contributes to 
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FIGURE 1. Geometric definitions of the physical problem. 

the aerodynamic forces and as far as the aerodynamic forces are concerned, whether 
there are other flow structures of comparable importance, and how vorticity and 
compressibility interplay to make different contributions to the aerodynamic forces 
under different free-stream Mach numbers M ,  and angles of attack a. 

The highly swept profile of a delta wing facilitates the generation of vortex systems 
due to leading-edge separation. Previous works on flows over a delta wing of various 
profiles cover a wide range of Mach numbers and angles of attack. Since the 
vorticity may be considered the only source of aerodynamic forces at low Mach 
numbers, there is no doubt that the vortex systems over a delta wing contribute to 
the lift and drag through their vorticity. However, the term 'vortex' includes not 
only the meaning of vorticity but also compressibility at high Mach numbers. There 
have been several formulations which allow us to view the vorticity as a source of 
aerodynamic forces; see e.g. Lighthill (1986, p. 214), Phillips (1956) and Wu (1981). 
The viewpoints are however limited to incompressible flows with constant densities 
and viscosities. In order to take into account the effect of compressibility, we need to 
have a consistent theory, which can be extended to viscous compressible flows. The 
recent force theory proposed by Chang (1992) for incompressible viscous flows is here 
extended to analyse aerodynamic forces on a delta wing. The surface pressure force 
is decomposed by introducing an auxiliary potential 4* (or 4) to several volume and 
surface integrals; each integrand of them will be termed a source element, which is 
related to either vorticity or compressibility such as dilatation or density gradient. All 
the source elements of the volume integrals decay rapidly away from the body. This 
decomposition enables us to analyse the aerodynamic forces in terms of vorticity and 
compressibility, which is in strong contrast to the conventional analysis based on the 
surface pressure distribution, which cannot differentiate contributions of individual 
flow structures nor contributions due to vorticity and those due to compressibility. 

Figure 1 shows the geometric definitions of the present delta wing with a swept 
angle A = 70". The delta wing is of elliptic section with axis ratio 14 : 1 at an angle 
of attack from a = 5" to 19" to a constant stream of Mach number M ,  between 
0.6 and 1.8. This choice enables us to validate numerical results by comparison with 
the experimental results of Squire (1985). Squire's experimental results indicate, in 
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particular, that we may also safely assume, for the flow regime considered, the flow 
to be steady without occurrence of vortex breakdown. With a, A and M,, we may 
define 

M& = M ,  cos a, 

where M; denotes the component normal to the wing's planform, M& denotes the 
parallel component, while M i  denotes the component normal to the leading edge on 
the plane of the planform. Note however that the most extensively studied profiles are 
sharp-edged delta wings, for which flow patterns were well classified by Miller & Wood 
(1983) following the earlier work of Stanbrook & Squire (1964), and were somewhat 
modified by McMillin, Pittman & Thomas (1990) in a wide range of flow conditions 
based on the parameters M," = ( M z  + Mg)''2 and a~ = tan-' ( M & / M & ) .  Moreover, 
for M ,  from 0 to 0.8, Schrader, Reynolds & Novak (1988) have shown that the lift 
coefficient decreases with increasing the Mach number M,, and the strength of the 
vortex system increases more rapidly with increasing the angle of attack at relatively 
lower Mach number. The main purpose of the study is to identify by numerical 
analysis the major source elements which contribute to the aerodynamic forces, and 
to discuss the physical significance of such an investigation. The idea underlined is 
that different source elements are not of the same significance: some elements are 
expected to be more important than others. The present analysis is particularly useful 
only when a few source elements are much more significant than others. The flow 
information is obtained by solving the Navier-Stokes equations in conservation form 
by a numerical method of TVD type, developed relatively recently by other authors. 
Newsome (1986) was able to show it inadequate to simply solve the inviscid Euler's 
equations, which could lead to physically incorrect solutions. To include the effect 
of turbulence, an isotropic algebraic two-layer eddy-viscosity turbulence model is 
incorporated in the formulation of the Reynolds-averaged Navier-Stokes equations. 

Mt$ = Mm sin a, M i  = M L  cos A,  

2. Auxiliary acyclic potential flow 
Consider a solid body moving through an incompressible fluid of constant density. 

The dimensional physical quantities are denoted with an asterisk '*'. Let us first 
determine the nature of the acyclic potential solution at great distances from the 
moving body. The potential function of the flow satisfies Laplace's equation, A*$* = 0. 
The solution is required to vanish at infinity where the fluid is at rest. In three space 
dimensions, the general form of the solution at great distances is given by 

and the velocity u i  = V*4* is 

where 2 denotes the unit vector in the direction of x*. The vector A* depends on the 
actual shape of the body and its motion, and can be determined only by solving the 
full potential equation A * 4 *  = 0 (Landau & Lifshitz 1987, p. 27).  Given a Neumann 
condition on the body, it can be shown then that the acyclic potential is uniquely 
determined (cf. Vladimirov 1971, p. 311). 

For later use, it should be kept in mind that the potential function decays rapidly to 
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0 as Ix*l tends to infinity. Precisely speaking, in three space dimensions the potential 
function +* decays at a rate of O(l/lx*12), and the corresponding velocity u> decays 
at a rate of O(  l/lx* 1 3 ) .  These rapidly convergent properties enter the source elements 
to be proposed in the next section, and thus distinguish the present analysis of 
aerodynamic forces from early approaches by other authors. 

3. A finite body in a constant stream 
Consider a finite body moving with a constant velocitythrough a viscous compress- 

ible fluid which is otherwise of uniform properties and at rest. Let p* denote the 
density, v* the velocity, and P' the pressure; the flow is assumed to be governed by 
the Navier-Stokes equations (cf. White 1991, p. 68) 

.Dvf dP* 8.1.; 
p D t ; = - - + -  

ax; ax;' ( 3 )  

where z; = A*$*hij + 2p*E,; is the viscous stress tensor, and p* and A* denote 
respectively the first and second viscosities. Abbreviated notation is adopted in 
equation ( 3 ) ;  we have the dilatation 9* = avf/ax; and the deformation tensor 
2EI;. = du;/axj + auj/axf. Let S; denote the surface of the body; the most commonly 
used force formula is given by the sum of the force due to pressure and that due to 
friction 

where ni denotes the unit vector directed toward the inside of the body. The body 
is assumed to move with a constant velocity c* in a certain direction. For a frame 
moving with the body, equation (3) can be rewritten, with u* = c* + u*, as 

where we notice that zlfj (9* and EI;.) may also be expressed in terms of ur instead of 
u f ,  and that for this frame the velocity on the body surface is 0. 

Let Vi  be the volume of fluid enclosed by S' which consists of the body surface 
S,* and a spherical surface S i  of radius R. Taking inner products with V*4* on both 
sides of ( 5 )  within V i ,  and then letting R -P co, leaving out all the surface integrals 
at Ix*l = R, yields various terms which will be considered below. First the left-hand 
side of ( 5 )  gives 

For the unsteady term, we simply have 

while the nonlinear term gives the contribution 



Aerodynamic forces on a delta wing 177 

These expressions were derived by repeatedly using the fact that 4* is a harmonic 
function and applying the divergence theorem. For the viscous terms, we notice that 
the last term on the right-hand side of ( 5 )  can be written 

The first two terms of (9) give 

where for simplicity we set IC* = A* + 2p*, while, for the third term, we have the 
contribution 

Finally, we have the contribution from the fourth term of (9), 

Now, of immediate importance is that some assumptions have to be made concerning 
leaving out the surface integrals at Ix*l = R, as R + 00. These integrals are 

Notice that V*4* appears in each of these surface integrals, and in view of the rapidly 
decaying property (2), it suffices to require that 

R-' M R  +. 0 uniformly, as R + "o, (13) 

(14) 

The conditions for this to hold can be met, under the assumptions that the boundary 
layer does not grow indefinitely, the wake behind the finite body does not develop 
singularities at infinity, nor at finite time, while the shock (whenever it exists) may 
extend outward indefinitely from the domain concerned. 

Let i be the free-stream direction, i.e. c* = -ci, then the pressure force along 
the direction i is obtained by requiring V*4* R = -cn - i (cf. (6)). The potential 
function thus required represents exactly the incompressible potential flow induced 
by the moving body. Collecting the above results and writing them in vector form, 
we have the pressure force along the direction i, 

where 

M R  = /X max I=R (IP*l, l p * ~ * ~ I ,  I I C ' ~ " ~ ,  Ip*n x o*I) . 

P*(n.i)dA* = I" + 11* + III* + IV*, 1,; 
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where 
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The right-hand side of (15a) has been divided into four parts. Part I* contains the 
unsteady contribution. Part 11* contains two terms, due to the density gradient and 
vorticity within the flow respectively. Part 111' contains two surface integrals, which 
are calledfriction-like terms to be explained later, while Part IV* is a volume integral 
due to the gradient of the shear viscosity p* within the flow. Each integrand in I*-IV* 
may be identified as a source element of the pressure force; and thus there are six 
source elements. 

At a first glance, the identity (15a) does not seem to be appealing since quite a few 
terms appear in the decomposition. However, not all the source elements are of the 
same significance at the same time. First of all, in the case of steady flows, we may 
dispense with the unsteady contributions. Second, it will be demonstrated later that 
the contribution due to V*p* is negligible at least in a transonic-to-supersonic regime. 
For later use, we denote by R ~ ( x * )  and Ve"(x*) the two integrands of Part 11': 

(16) 
1 1 

2c C 
R,*(X*) = --u*2v*p* . V'4*, V,'(X*) = --p'u* x w* . vy*.  

Recall from (2) that V*4* are rapidly decaying. The two elements R:(x*)  and V;(X*) are 
negligibly small at distances away from the body. Any finite volume of fluid elements 
at large distances will therefore not contribute significantly to the aerodynamic forces 
(lift and drag) through R:(x*), nor through Ve*(x*); this nice property associated with 
the decomposition (15a) is, in our view, satisfactory. 

While (15a) is the decomposition of the pressure force along the i-direction, the 
friction force projected along the i-direction can be shown to be, after a little algebra, 

i = - 1; K* $* n - idA* + 1; p* n x o* idA', (17) 

where a surface integral of -2p*(duS/ax; - $'6,)nj * i has been dropped. For (17), 
we shall denote the first term on the right-hand side by F; and the second term 
by F;. Likewise, we shall denote by 11; the first term of Part 11', and by 111; the 
second term of Part 111'. The expressions for the pressure force projected onto other 
directions can be similarly derived. Let i, j and k form an orthonormal set; the 
components along j and k are obtained by requiring respectively V'4* * n = -c j n 
and V*$* n = -c k - n on the body surface, and then proceeding with the rest in 
exactly the same way. The unit vector j is typically chosen to be the direction of 
the lift force. In practice, we need only compute three $* values, for the directions 
parallel, normal and transverse to the planform of the delta wing; any other 4* can 
be obtained by an appropriate linear combination of these three. This is because the 
unit of any direction can be written as a unique linear combination of a set of three 
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linearly independent directions. Notice that F;  is identical to -III;, and it can be 
shown that the equality 

111; + 111; = --F; + g,F;, 
holds for flow about some geometrically simple bodies, e.g. flow about a cylinder, a 
sphere or an ellipsoid of revolution. The factor g, is a constant, determined by the 
shape of the body, and may be termed the geometric factor, which is 1 for a circular 
cylinder and 0.5 for a sphere. Because of the relation (18), the surface terms of III* 
in (15d) are said to be friction-like; and the geometric factor may serve as a measure 
of the bluffness of geometrically simple bodies (cf. Chang 1992). 

4. The method of solution 
All the results from now on are presented in dimensionless form. Let the length 

of reference 9 be the distance from the vertex to the base of the delta wing. Time 
t’ is normalized by 9/&, and the density p’, sound speed a*, temperature T’ are 
normalized by their values at infinity, p&,, a;, T , ,  and so are the viscosities p* and 
A* by pk. The pressure P *  is normalized by pku:, the velocity u* by the sound speed 
a>, and the auxiliary potential velocity V*4* is normalized by the speed c. All the 
normalized variables will be denoted by plain letters. Furthermore, since a turbulence 
model is to be used, the averaged quantities of the dimensionless physical variables 
will be denoted with an overbar. 

4.1. Force formula with the turbulence model 
To include the effect of turbulence, we adopt the isotropic algebraic two-layer eddy- 
viscosity model, originally developed by Baldwin & Lomax (1978) with modifications 
by Degani & Schiff (1986). Favrzs method of averaging (i.e. density-weighted) is 
taken in the present study. The dimensionless Reynolds-averaged Navier-Stokes 
equations with the Mach number defined by M ,  = u;/ak, and the Reynolds number 
by Re = p k u k 2 / &  then read 

where tij = -$p, $Si j  + 2peEij with the Stokes’ relation 32, + 2pe = 0 being assumed. 
The pressure P is understood to have incorporated a term t p  k where k denotes the 
turbulent kinetic energy. The effective viscosity p, = pr + pt is obtained by evaluating 
pr (molecular viscosity) from Sutherland’s law, and pt (eddy viscosity) from Baldwin & 
Lomax’s two-layer equilibrium eddy-viscosity model. For details, we refer to Marvin 
(1983) for the averaged equations, and to Gee, Cummings & Schiff (1992) or Degani 
& Schiff (1986) for the model of turbulence. 

A few words should be added here. It is nowadays common practice to have the 
turbulence model for Mm < 5 in the form developed for incompressible flows. The 
density and temperature fluctuations are considered to have insignificant influence 
on the model of turbulence. This is called Morkovin’s hypothesis; refer to Marvin 
(1983) and also Lakshminarayana (1986) for a discussion of this aspect. Notice that 
equation (19) is now in exact analogy with ( 5 )  except for the factor M,/Re appearing 
in front of the stress tensor 9,; the appropriate form of (15a) for the present model 
of turbulence is then readily available: 

M,- M,- P ( n . i ) d A =  I + n + -111 + -IV, 
Re Re 
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while the terms on the right-hand side can be written immediately from (15b-e): 

m= - Ic,$V$.ndA + pen x ii,.V+dA, (204 1, .I, 
- 
I v  = 1 VpL, * G ' v4 dV, Gij = 2$&j + e i j k a k  - 2Eij, 

where IC, = 2, + 2pe = (4/3)pe. In particular, we notice that IC*, p* in (15d) and 
(15e) have changed _ _  to IC,, pe in (204 and (20e) to account for the turbulence effect. 
The symbols I-IV (and also F )  therefore mean that all the other variables in I*- 
IV* (and also F * )  are simply replaced by their averaged and non-dimensionalized 
quantities. Notice that all the terms (integrands) in (20b-e) can be evaluated directly 
by employing the computed solutions, and in particular, we have now the averaged 
and non-dimensionalized source elements 

&(x) = -iii2Vp - V 4  and V,(x) = - p u  x ii, - V4.  (21) 

4.2. Numerical method and grid specijication 
For numerical purposes, we introduce the general coordinates (5, y, i) : 

4 = t ( X , Y , Z ) ,  y = V ( X , Y , Z ) ,  i = 5(x,y,z). (22) 

The Jacobian J is defined to be J = a([, y, [)/a(x, y ,  2 ) .  The fluid is assumed to be a 
calorically perfect gas with the specific ratio y = 1.4. Let Q = Jpl (p ,pZi ,pB,pw,e)T  
with U, 13, W the velocity components and 2 the specific total energy (per unit volume). 
The governing equations, including (19), can be conveniently expressed in the form 
of conservation laws, 

(23) 
aQ aE al; aG aE, aF, aG, -+-+-+-=-+-+-  
a t  a t  a y  ay a t  ay ay 

where a subscript 'u' is used to denote viscous or conducting terms, and we refer to 
Yokota (1990) for the detailed (dimensional) expressions of the flux terms E,  F ,  G 
and E,,  F , ,  G, (with the eddy-viscosity turbulence model). 

The supplementary conditions for solving (23) are as follows. The flow is assumed 
to be symmetric about the vertical plane passing through the minor axes of the 
elliptic cross-sections. The initial condition is that of an impulsive start, while the 
boundary conditions on the surface of the delta wing are the no-slip, adiabatic and 
impermeable conditions. In addition, there is a numerical outer boundary where 
characteristic boundary conditions are imposed for the pressure, density and velocity. 

Let A = aE/aQ,  B = d F / i 3 Q  and C = d G / d Q .  The conservation laws (23) are 
then solved for AQ = Q"" - Q" by the following implicit finite-difference scheme 
between two time levels n and n + 1: 

[I + PAt(DcA + D,B + D;C)]AQ + AtR = 0 (24) 

where At is the time step size, and 0 < < 1 specifies the degree of implicitness and 
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is taken to be 1/2 in the present study. The size of At depends on the CFL number 
and may vary for each time step, and R in (24) denotes the residual term given by 

R = D,(E + E,)  + D,(F + F , )  + Dc(G + G o ) ,  (25) 

for which DtE, D,F and DSG will undergo TVD-type discretization (cf. Yee & 
Harten 1987), while DtE,, D,F, and DcG, are simply discretized by central finite 
differencing. Let 21, AB and & denote respectively the eigenvalues of the matrices A, 
B and C. To save storage and computational labour, we choose Jameson & Yoon’s 
(1987) LU-SSOR scheme, which makes an approximate factorization of the operator 
on the left-hand side of (24) to yield 

11 [I + pAt (D;A+ + D;B+ + D;C+ - A -  - 8- - C- 

x [I + pAt (D;A- + DTB- + DTC- + A’ + B+ + C’)] A Q  = -At MR,  (26) 

where 

The symbols Dl ,  D:, DT denote forward-difference operators in the respective 
directions, while Dr, D;, Dr are backward-difference operators, and 

M = [ 1 +  pAt (VA + V B  + VC)] 1 .  (27) 

-+  1 - -- 1 - 

- +  1 - 1 -  

- +  1 - 1 -  

A = - ( A  2 + V - /  A 1, A = - ( ~ - v A / ) ,  2 

B = - (B  2 + v - /  B ), B- = - ( B  2 - ve/), 

c = -(C 2 + v&, c- = -(C 2 - Q/), 
with 

v~ 3 max( I), VB 3 max( IAB I), vc 3 max( I& I). (29) 
To complete the numerical procedure, it remains to specify the grid system, for 

which 5 ,  y and 5 take on integral values on the grid points. Between x = 0 and 1, 5 
is related to x by 

+ 1 l - ( t / P )  K1- 1 

K1+ 1 1 -1  
x = 1 - 61 - with K1(<) = (g) , 

where p is the largest value of <, and 61 > 1 is a parameter, which implies a dense 
grid distribution near the solid boundary as d1 is close to 1. In addition, a number 
of grid points are also put along the negative x-direction between x = -c and 0 and 
x = 1 and d in a way similar to (30). Let A, B be two constants; we write for each 4, 

Y = a(<, Y)  cos Q(0, z = b(5, Y )  sin Q(i), (31) 

where 245) and 2b(<) denote the lengths of the major and minor axes of the elliptic 
section. K2(q) is made identical to K1(<) by merely replacing ( p ,  5,61) by (q ,  q ,  62). The 
variable [ is scaled with the azimuthal angle 8: i = r%/n which is equally divided: 
A0 = n/r  (A[ = 1). The numerical outer boundary is determined by the two planes 
x = -c (ahead of the vertex) and x = d, and the surface of an elliptic cylinder 
described by ( x / A ) ~  + (y/B)’ = 1. 
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FIGURE 2. The grid system adopted in the present study; between x = 1 and d = 1.5, the grid is 
shown for the planar section z = 0. 

The overall scheme constructed is second order in both time and space, and allows 
a CFL number of 5. Figure 2 shows the grid system adopted here, which is one with 
p x q x r = 30 x 40 x 80 and has, in addition, five points ahead of the vertex along the 
negative x-direction. Behind the trailing-edge plane, the grid system is 15 x 50 x 80 
where 10 y-grid lines are appended to account for the part of the wake directly 
behind the base of the delta wing. It is found adequate to take c = 0.2, d = 1.5 and 
6, = 1.03 for the scaling between x and <, and A = B = 1.5, 6 2  = 1.0005 for the 
scaling between q and a(<,y)  and b(<,y). This choice gives the smallest spacings: 
Axo = 4.45 x and a(<, 1) - a(<)  = 1.152 x 10P4(1.5 - a(<)).  Let N be the total 
number of grid points; steady-state solutions are obtained by requiring the L2 norm 
Np1I2 [C (p"+' - P " ) ~ ]  of two successive density distributions p" and pn+' on the 
grid to be less than 4 x loP6. The same grid system is also used to solve for the 
auxiliary potential functions 4, defined in the previous sections. All the calculations 
are performed on a CRAY-YMP/EL, and the CPU time for the numerical scheme is 
on the average 2 x lop4 s per grid point per time step. 

1 I 2  

5. Numerical results and discussion 
The Reynolds number Re is taken to be lo6 for all the cases, at which and for the 

present geometry, the assumption (13) with (14) can be considered to be valid. 
Since no existing turbulence model is known to be satisfactory for all separated 

flows, it is necessary to assess the validity of the adopted model by comparison with 
experimental data. Figure 3 shows the computed surface pressure coefficients C p  

at two different sections, compared to the experimental values measured by Squire 
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FIGURE 3. Computed surface pressure coefficient Cp,  compared to the values measured by Squire 
(1985) for the case M ,  = 1.8, CI = lo" and Re = lo6, where Y,, denotes one-half length of the 
major axis. 

(1985). The agreement appears to be satisfactory, and a good conical symmetry is 
revealed in this case. Let S' be a reference area with S = 1/4. The lift coefficient is 
defined by 

where L' (L )  denotes the averaged (dimensionless) lift exerted on the delta wing. The 
drag coefficient CD is defined in the same way. It should be noted here that CD and 
CL are evaluated according to the averaged version of (4), i.e., 

(34) 

where the stress tensor tij is defined below (19), and may be computed by analogy 
with (17). Figure 4 presents the general behaviour of the lift and drag coefficients. It 
is observed that for each M,, both CL and CD increase monotonically with increasing 
angle of attack a. The maximum lift to drag ratio is 3, occurring at around a = lo" 
for all the Mach numbers M ,  considered. For each a, both CL and CD decrease 
monotonically with increasing Mach number M,. Inspecting the individual lift and 
drag curves for various M ,  reveals that the rate of increase with a for both CL and 
CD is getting slower at higher Mach numbers. The lift curve for M ,  = 1.8 even 
bends downward, and which means that we can no longer increase the lift coefficient 
efficiently by increasing further the angle of attack a at this higher Mach number. 

5.1. Basic flow patterns 

It would be useful to first identify the flow pattern. Newsome (1986) investigated the 
same profile; his study was however limited to the Mach number M ,  = 2.0 and the 
angle of attack a = lo". It is therefore worthwhile to have a discussion about the 
flow structures. Figure 5(a) shows the basic flow pattern, while 5(b) shows a typical 
section. Since the flow is symmetric about the vertical plane crossing the centreline, our 
discussion will be limited to the left half-plane for convenience. (Notice that conical 
symmetry is not assumed in the present study.) Typically, the flow separates along a 
line near the leading edge, leading to a primary vortex (PV). The line of separation is 
called the primary separation line (PSL). In most cases, the primary vortex is strong 
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0.8 I I 

I I I 
10 15 20 

Angle of attack (deg.) 
FIGURE 4. Lift ( C L :  upper curves) and drag (CD:  lower curves) coefficients at various Mach 

numbers M ,  and angles of attack a. 

PSL LOR SSL 

FIGURE 5. Typical flow pattern: (a) an overview, (b)  a cross-section. 

enough to cause a secondary separation along another line, leading to a secondary 
vortex (SV) or separation bubble. This line of separation will be termed the secondary 
separation line (SSL). The primary vortex reattaches to the surface of the delta wing 
along a third line of interest - termed the line of reattachment (LOR). The relative 
positions of these highlighted lines reveal much flow information. Another region of 
importance is the front boundary layer lying in front of (below) the delta wing, and 
a shock may exist below the delta wing at relatively high Mach numbers. 

5.2. Limiting surface streamlines 
In order to see how the lines mentioned above and other detailed features behave 
under different M ,  and CI, it is probably informative to investigate the limiting surface 
streamlines on the delta wing. 

Figure 6 shows limiting surface streamlines for M ,  = 0.6 at a = 5", lo" and 19". 
The primary separation line is near the edge at a = 5", moving rapidly toward the 
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FIGURE 6. Limiting surface streamlines for M ,  = 0.6: (a) a = 5", ( b )  10" and (c )  19" 

leading edge with increasing a. Meanwhile, the secondary separation line and the line 
of reattachment move in the inboard direction and their distance is widening. The 
last fact indicates that the secondary vortex grows in size and moves inboard with 
increasing a. It is also seen that the whole region of cross-flow is extending inboard 
with increasing a. This implies that the primary vortex covers a wider flow region at 
higher a, say 19", extending from the leading edge to an inner line close to plane of 
symmetry. For M ,  = 0.8 and 1.2, we have very similar patterns of limiting surface 
streamlines, but the secondary vortex is smaller at CI = 5" and is somewhat larger at 
higher a = 10" and 19". Figure 7 shows the plots of limiting surface streamlines for 
M ,  = 1.8 at c1 = 5", 10" and 19". The secondary vortex barely exists at a = 5", and 
is typically smaller than it is at lower Mach number at the same angle of attack. If 
we look at the density profiles (not shown), the flow structures over the delta wing 
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FIGURE 7. Limiting surface streamlines for M ,  = 1.8: (a)  c( = 5", (b)  lo" and (c) 19" 

appear to be more flat at higher Mach numbers, and near the leading edge there is a 
region of strong expansion as the flow turns around it. 

5.3. Analysis of the lift force 

It is found by evaluating the individual contributions for all the cases under consid- 
eration that about 95% or even more of the lift coefficient CL comes from CLR and 
CLV. Here CLR and CLv are defined as follows: 

CLR(CLV) : the part of CL due to &(x)( Ve(x)) 

in front of the plane passing through the trailing edge. (Note that in the present section 
&(x) and V,(x) are used exclusively to denote the lift (not drag) elements.) To 
illustrate this situation, table 1 lists the individual contributions of the various source 
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-1 

F2 
R, 
CL( To tal) 

F; 
-1 

F2 
R, 
CL(Total) 

c! = 5" 

- 

0.038407 
0.092982 
0.000874 
0.000782 

-0.000002 
0.000874 
0.000356 

0.134091 
-0.000182 

- 

0.0621 36 
0.063921 
0.000864 
0.000778 

-0.00001 1 
0.000864 
0.000386 
0.000773 
0.12971 1 

- 

0.127 123 

0.000742 
0.000738 

0.000742 
0.000374 
0.003265 
0.130149 

-0.002807 

-0.000028 

- 

0.203109 

0.0005 9 7 
0.000394 

0.000597 
0.000356 
0.000346 
0.098312 

-0.107029 

-0.000058 

a =  lo" 

- 

0.0933 12 
0.208384 
0.002232 
0.001464 
0.000003 
0.002232 
0.000826 
0.002039 
0.310492 

- 

0.149082 
0.14273 1 
0.002189 
0.001497 
0.000002 
0.0021 89 
0.000805 
0.004152 
0.302647 

- 

0.304337 

0.002107 
0.001223 
0.000003 
0.002107 
0.000801 
0.003592 
0.310328 

-0.993842 

- 

0.484 125 

0.001 007 
0.000782 
0.000441 
0.001007 
0.000772 
0.007429 
0.264312 

-0.231251 

= 15" 

- 

0.152990 
0.341448 
0.003561 
0.001 836 
0.00001 3 
0.003561 
0.00 1286 
0.004 14 1 
0.508836 

- 

0.243051 
0.223529 
0.003116 
0.002009 
0.00001 5 
0.003116 
0.001202 
0.003373 
0.47941 1 

- 

0.45951 1 

0.003023 
0.001762 
0.000017 
0.003023 
0.001 170 

0.463001 

-0.005170 

-0.000335 

- 

0.696 120 
-0.324431 

0.001416 
0.001 120 

-0.000026 
0.0014 16 
0.001080 
0.007256 
0.383950 

C( = 19" 

- 

0.217646 
0.451945 
0.004085 
0.002095 
0.000023 
0.004085 
0.001706 
0.001 5 18 
0.683103 

- 

0.3 20445 
0.300688 
0.004021 
0.002192 
0.000270 
0.004021 
0.001559 
0.001 895 
0.635091 

- 

0.553925 
-0.002098 

0.003939 
0.002002 
0.000034 
0.003939 
0.001490 
0.005181 
0.568412 

- 

0.813921 

0.001906 
0.001612 
0.005996 
0.001906 
0.001563 
0.000597 
0.45901 1 

-0.368490 

--I -1 

TABLE 1. Relative importance of source elements where 1; . . . , F ,  denote respectively 1; . . . , F ,  
restricted to the flow field in front of the trailing-edge plane. Note that Fi and mi are 
displayed for their absolute values, while R, is defined to be the difference between the 
total lift coefficient CL and the sum of the above contributions. (a) M ,  = 0.6, (b)  M ,  = 0.8, 
( c )  M ,  = 1.2, (d) M ,  = 1.8. 
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elements for all the cases under consideration. Notice that there is a difference R+,, 
between the computed CL and the sum of all the force integrals because the domain 
of computation is limited. However, the smalless of R,, compared to the value of CL, 
observed in all the cases not only gives us some confidence in the numerical results, 
but also provides a good indication that the present analysis based on the expression 

are also found to be 
relatively insignificant. CLR and CLv are therefore of primary interest for further 
investigation. Meanwhile, it would be also of interest to look into the distributions 
of &(x) and V,(x) (cf. (21)) in some selected cases. In view of (33), we define 

(20a) is useful and meaningful. - -  
The friction and friction-like terms: F ,  111 as well as 

To understand further the behaviour of C L ~  and CLv, we divide the computed flow 
region into the windward and the leeward sides, and observe the total contributions 
of &(x) and pe(x) in individual regions. CLv(w),  C L ~ ( 2 )  and CLv(w),  CLv(l)  are used 
to denote these individual contributions; though the partition is somewhat arbitrary, 
it does reflect salient features of the source elements &(x) and pe(x). 
5.3.1. M ,  = 0.6, a = 5", lo", 15", 19" 

Figure 8(a) shows that CLR increases more rapidly than CLv with increasing 
angle of attack. Observe that CLv contributed by V,(x) is twice as much as CLR 
contributed by &x) for all the the angles of attack. For this subsonic case, pe(x) 
rather than &(x) is the dominating contributor to the lift. Next let us look at the 
individual contributions from the leeward and windward sides. Figure 8(b) shows the 
decomposition C L ~  = CLR(~)+CLR(W),  while figure 8(c) shows CLV = C ~ v ( l ) + C ~ v ( w ) .  
It is seen that CLR(w) is fairly small and increases slowly to 0.065 at a = 19", while 
CLR(I) is relatively important and increases moderately to 0.16 at M = 19". Notice 
that CLv(w)  is negative, and its value for each respective angle a is obviously not 
negligible. The value of CLv is the result due to strong cancellation of CLv(l)  from the 
leeward side by the negative CLv(w) from the windward side. Whilst CLv(l)  increases 
from 0.79 at a = 5" to 0.99 at M = 19", C L ~ ( W )  varies gradually from -0.71 at a = 5" 
to th value -0.53 at a = 19". Although CLR is not very small compared to CLv,  the 
individual components C L R ( l )  and C L ~ ( w )  are smaller than CLv(l)  and CLv(w)  by one 
order of magnitude. 

5.3.2. M ,  = 0.8, a = 5", lo", 15", 19" 
Figure 9(a) shows that CLv and C L ~  are of the same order in this high subsonic 

case. Compared to CLv, the value of C L ~  increases at a slightly faster pace from 
0.067 at a = 5" to 0.33^at a = 19". ItAis inferred from the present and the previous 
cases that the element &(x) replaces Ve(x)  as a dominating contributor to the lift at 
about M ,  = 0.75. Let us also examine the individual contributions from the leeward 
and windward sides. Figure 9(b) shows the decomposition CLR = CLR(Z) + CLR(W), 
while figure 9(c) shows CLv = CLv(l)  + CLY(W).  It is seen that CLR(W) is fairly small 
and even negative at a = 5", but then increases to the positive value 0.08 at a = 19". 
CLR(Z) is relatively more important, increasing steadily from 0.077 at a = 5" to 0.24 
at 19". Owing to the vorticity, CLv is again due to strong cancellation of C ~ v ( l )  
from the leeward side by the negative CLv(w) from the windward side. Compared 
to the previous case, here CLv(l)  increases less rapidly with increasing a, being 0.77 
at a = 5" and 0.86 at a = 19", while the magnitude of CLv(w) varies at about the 
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FIGURE 9. As figure 8 but at M,  = 0.8. 

same rate. These trends result in smaller values of CLV at this higher M ,  at the 
same angle of attack. The comparison indicates that w$h increasing M,, the vortex 
systems around the deita wing reinforce the elements &(x), whilst weakening their 
contribution through V,(x).  Although CLR and CLv are of comparable order, we 
observe again that CLR(l) and C L ~ ( w )  are much smaller than CLv(l)  and CLv(w) in 
magnitude. 

5.3.3. On the negative sign of pe(x) and CLv(w) 

It would be interesting to understand why the value of CLv(w) is negative - a 
somewhat surprising result. Obviously, CLv(w) is due to non-vanishing vorticity, and 
the front boundary layer (below the delta wing) is the only source of vorticity and 
thus pe(x). It is therefore necessary to consider the orientation of ii x 0 and its 
inner product with -Vd of the hypothetical potential 4. For this, it is convenient to 
decompose the free-stream velocity into a component parallel to the wing's planform 
and the one perpendicular to it (cf. figure 1). Near the front of the wing, M,$ induces 
a transverse vorticity component fit, while M: induces a vorticity component fi, 
parallel to the direction of ML. The two components constitute the front boundary 
layer within which we shall write ii = lip + iit and 0 = wt + w,, thus 

ii x 0 = ii, x 0t +u,  x 0,. 
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FIGURE 10. Schematic of the hypothetical vector field V$ associated with the lift with the delta 
wing moving downward (opposite to the lift direction). 

Both terms on the right-hand side are normal to the wing's planform and directed 
toward the windward side. Since here we consider the lift, V4 is the velocity of the 
potential flow, generated by hypothetically moving the delta wing in the direction of 
negative lift. The orientation of V4 in a cross-section away from the vertex and the 
base of the delta wing can be seen from figure 10. Within the front boundary layer, 
the angle between ii x ii, and the direction of V4 is accurately approximated by the 
angle of attack a. Since the angle of attack a is acute, ii x ii, * V4 must necessarily be 
positive, and thus the element V,(x) = -pii x ii, * V 4  is negative. Notice that the range 
of a is between 5" and 19", hence the dominating vorticity component is due to M& 
(related to cosa) rather than M& (related to sina). For a given Mach number M ,  (0.6 
or 0.8), this explains why the negative value of CLv(w) decreases in magnitude with 
increasing angle of attack a. No effect from the shock is observed to have significance 
at these relatively low Mach numbers. 

5.3.4. M ,  = 1.2, a = 5", lo", 15", 19" 
Surprisingly, !he lift 

is contributed almost totally by &(x); the value of CLv contributed by V,(x)  is 
negligibly small. Now CLv and CLR are no longer of comparable order of signifizance 
in this supersonic case. But then what happens to the vorticity element V,(x)? 
To investigate this, we need to examine the individual contributions of &(I) and 
Q,(x) from the leeward and windward sides. Figure l l ( b )  shows the decomposition 
CLR = CLR(l) + CLR(W), while figure l l (c )  shows CLv = CLv(l) + C L ~ ( W ) .  CLR(W) is 
negative (-0.04) at CI = 5" and increases gradually to 0.12 at 19". In contrast, C L R ( ~ )  
is still much more important and increases steadily from 0.16 at a = 5" to 0.43 at 
a = 19". Addition of CLR(l) and CLR(w) is basically constructive, yielding a positive 
contribution to the total lift coefficient. In view of all the cases discussed so far, 
the values of CLR(1) and also CLR(w) increase with increasing Mach number M ,  at 
the same angle of attack. Next consider CLv = CLv(l)  + CLv(w).  The addition is 
now totally destructive; the positive CLv(l)  is well balanced by the negative CLv(w).  
Notice that here CLv(l)  decreases gradually with increasing a, which is in strong 
contrast to the previous cases of lower Mach numbers, where C ~ v ( l )  increases with 
increasing a. On the other hand, the magnitude of CLv(w) as usual decreases with 
increasing angle of attack a. CLv(l)  decreases from 0.70 at a = 5" to 0.61 at 19", 
while CLv(w) increases from -0.70 at a = 5" to -0.61 at 19". These trends result 
in nearly total cancellation of CLv(l)  by CLV(W),  yielding the very small values of 
CLv. Again, we have observed that by increasing M,, the vortex systems over the 

Figure l l (a)  shows CL decomFosed into C L ~  and C L ~ .  
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FIGURE 12. As figure 11 but at M ,  = 1.8. 

delta wing intensify their contribution to the lift through &x), whilst weakening the 
contribution through qe(x). Although CLR is negligibly small compared to CLV,  note 
that CLv(l)  and CLv(w)  are at least of comparable order to C L R ( 1 )  and CLR(W).  

5.3.5. M ,  = 1.8, 
Figure 12(a) shows CL decomposed into CLR and CLV. At this Mach number, we 

even see that the value of CLV is negative for all the a values considered. C L R  is about 
0.2 at a = 5", and increases rapidly to 0.81 at cx = 19". On the other hand, CLv is 
-0.1 at a = 5" and decreases rapidly to -0.36 at a = 19". Although the value of C L R ,  

compared to that at M ,  = 1.2, is relatively much larger for each respective a, the 
overall lift coefficient CL is smaller because of the cancellation due to the negative 
sign of CLV.  Figure 12(b) shows the decomposition CLR = C L R ( ~ )  + CLR(W),  while 
figure 12(c) shows CLv = CLv(l)  + CLV(w). CLR(W) is -0.1 at a = 5", but increases 
gradually to about 0.13 at a = 19". In contrast, C L R ( 1 )  is much more important and 
increases steadily from 0.31 at a = 5" to 0.67 at a = 19". Addition of CLR(Z) and 
CLR(w) is constructive except at a = 5", yielding a positive contribution of CLR to 
the lift. On the other hand, the addition CLV = C L V ( ~ )  + CLV(w)  is destructive; the 
positive CLv(Z) is cancelled to a large extent by the negative CLv(w). CLV(1) decreases 
from 0.57 at a = 5" to 0.35 at a = 19". Notice that the negative CLV(w)  even decreases 
slowly from -0.68 at a = 5" to -0.72 at a = 19". This could be due to the effect of 

= 5", lo", 15", 19" 
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the shock, behind which the front boundary layer thickens as the angle of attack is 
increased. The sum CLv of CLv( l )  and CLv(w) is therefore negative, and decreases 
from -0.1 at SI = 5" to a more negative value -0.36 at the higher SI = 19", as noted 
above. Comparison of CLR(l)  and CLv( l )  jndicates that the flow structures over the 
delta wing contribute more efficiently to &(x) than to P,,(x). Whilst CLv is smaller 
than CLR in magnitude, the value of CLv(w) is large and negative, and cancels a large 
part of the positive contributions from CLv(l) ,  CLR(l)  and perhaps CLR(w). 

5.3.6. Further discussion on Ce(x) and &(x)-distributions 

In the above, we have examined the accumulated values of &(x) and PJx), 
integrated over either the whole flow field or the leeward and windward sides. It 
would also be interesting to learn how the source elements %(x) and PJx) are 
distributed in the flow field. Figure 13(a) shows contours of @,,(x), and figure 13(b) 
shows contours of &(x) for theAcase M ,  = 1.2 and ct = 19". It is observed that near 
the lower surface, the sign of &(x) is negative; this implies that the density along 
the lower surface of the delta wing is lower than the density just below it. For the 
same reason, the depsity along the upper surface is lower than the density just above 
it since the sign of &(x) is positive %long the upper surface. 

To understand the behaviour of Ve(x)  and &(x), it is useful to consider that the 
flow consists of an infinite number of sections parallel to the cross-sections of the 
delta wing. The element ce(x) must change its sign along a surface consisting of the 
centres of streamlines projected onto these planes. A centre of projected streamlines 
is typically a little away from the wall, and where the vorticity is roughly normal to 
the (projected) section passing through the centre, i.e. 0 FZ 0,. For the velocity, we 
write ii = up + u,, then the element V,(x) (related to pe(x) by (35)) is 

-pu x 0 vq5 = -pa, x OP * vq5. 
Near the centre, ii, moves in a circle around the centre, and on the circle the vector 
--U, x OP is either always directed outward from the centre or toward it, and therefore 
must make a right angle twice with the smooth vector field Vq5. This indicates that 
on each section, there is a dividing line of Pe(x), passing through the centre of the 
projected streamlines, and these dividing lines consist of a surface where the element 
te(x) changes its sign. From figure 13(a), it can be see? that the primary vortex is 
divided by one such line into a blue region of negative V,(x)  and a yellow region of 
positive V,(x) .  Near the surface, the component 0, changes its sign, and thus it is 
also seen that below the blue region there exists a red region of positive ?,,(x). 

Analogously &(x) or &(x) = -iU2Vp * Vq5 must change its sign along a surface 
passing through a line consisting of the points of maximum density; this can easily 
be understood by considering a cross-section. Notice that V p  either always points 
outward from, or toward the centre of density, while Vq5 changes smoothly in its 
neighbourhood. If we move around the centre in a full circle, V p  must make a right 
angle twice with Vq5; this therefore divides the core of density into two regions of 
opposite signs. For each cross-section, there are actually two centres of maximum 
density: one is that of the primary vortex and the other is associated with the 
secondary vortex. Refer to figure 13(h). The flow over the delta wing is therefore 
divided to four subregions of different signs of &(x): two positive and two negative. 
Next to the upper surface we have a region of positive sign, which consists of a layer 
inboard connected with the lower partAof the secondary vortex. The upper part of the 
primary vortex is a region of positive &(x), which is connected to a quite large region 
of strong expansion around the leading edge. The region of expansion is positive 
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because around the leading edge the fluid expands and the density gradient V p  is 
therefore opposite to that of V+, yielding positive &(x) = -iu2Vp - V+. The negative 
region lies in between, and consists of the inner lower p%rt of the primary vortex 
and the upper part of the se:ondary vortex in terms of &(x). Roughly speaking, 
the major region of positive &(x) is larger than that of positive V,(x) in size, while 
the region of negative &x) is smaller than that of negative f'Jx) (though the scales 
shown are not the same in figure 13a,b). 

5.4. Summary of the results 
To summarize the above observations, we have found the following features for flows 
around the delta wing of elliptic section. 

(i) The lift coefficient CL (CD)  decreases with increasing Mach number M,, at 
the same angle of attack. 

(ii) The lift coefficient CL (C,) increases with increasing angle of attack a ;  the 
rate of increase is slower at higher Mach !umber. 

(iii) The contribution of CLv due to V,(x)  dominates that of CLR due to &x) 
until M ,  = 0.75. The value of CLv even becomes negative as the Mach number is 
increased past about M ,  = 1.2. 

(iv) The contribution of CLv(w)  is always negative and significant at all Mq and 
a values considered. The front boundary layer is a strong source of negative V,(x),  
yielding negative CLv( w), whose magnitude decreases with increasing the angle of 
attack for M ,  = 0.6, 0.8 and 1.2, but increases slightly at M ,  = 1.8. 

(v) CLv(l) behaves differently for subsonic M ,  = 0.6, 0.8 and supersonic 1.2, 1.8. 
For the subsonic cases, CLv( l )  increases with increasing a, whist decreasing for the 
supersonic cases. For a given a, C L v ( l )  decreases with increasing the Mach number; 
the rate of decrease is larger at higher angles of attack. 

(vi) It is concluded from (v) that the strength of the vortex system in terms of 
te(x) (vorticity) can be increased by increasing CI only at relatively low (subsonic) M,. 
By increasing the angle of attack, the vortex system over the delta wing decreases its 
strength in terms of V,(x)  at relatively high (supersonic) Mach numbers. 

(vii) CLR(l) is always positive, and increases steadily with increasing either M ,  or 
a. In this sense, the vortex sy2tem over the delta wing increases its strength through 
compressibility in terms of &(x), as the Mach number or the angle of attack is 
increased within the range of observations. 

(viii) The vortex system over the delta wing contributes significantly to the lift 
through &(x) (due to compressibility) for flows at sufficiently high Mach numbers 
and angles of attack, e.g. M ,  = 1.8 and a = 15" and 19" in the present study. 

(ix) The fluid expands as it turns around the leading edge, forming a region of 
strong expansion, thus contributing to the lift through the elements &x). This is an 
important source of &(x) for compressible flow, and becomes the major source of 
positive &(x) at sufficiently high M,. 

(x) For all the cases considered in this study, the sum of CLV and CLR differs 
from CL by at most 5 % ;  this implies from the definitions of CL" and C L ~  that the 
wake region makes relatively small contribution to the lift coefficient CL. 

6. Concluding remarks 
Flow control is one of the purposes in studying the aerodynamic forces, in particular, 

their relationships to flow structures. Efficient flow control relies on knowledge about 
the factors which may effect the change of flow (and thus the forces) as they vary in the 
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range of interest. In this regard, the present study provides a valuable examination 
of the aerodynamic forces by identifying two major sources &(x) and V,(x), and 
gives a precise assessment of their relative importance in a range from high subsonic 
to supersonic flows over a delta wing. Vorticity has been naturally linked with 
the vortex system, and regarded as the major source of the lift for incompressible 
flows. From the present viewpoint, this is only partially true for subsonic flows, and 
is not at all correct for supersonic floys, especially at high Mach numbers. The 
region of density variation (and thus &(x)) is not identical to the region of non- 
vanishing vorticity (and thus pe(x)); the importance of control of density variation for 
supersonic flights with the use of delta wings cannot be overestimated in favourable 
aerodynamic forces. Although the above analysis only concerns details for the lift 
coefficients, the analysis for the drag is very much the same and is not pursued further 
here. 
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